Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria.

نویسندگان

  • Fenghao Xu
  • Cameron Ackerley
  • Mary C Maj
  • Jane B L Addis
  • Valeriy Levandovskiy
  • Jisoo Lee
  • Nevena Mackay
  • Jessie M Cameron
  • Brian H Robinson
چکیده

Mice homozygous for a defect in the PTCD2 (pentatricopeptide repeat domain protein 2) gene were generated in order to study the role of this protein in mitochondrial RNA metabolism. These mice displayed specific but variable reduction of ubiquinol-cytochrome c reductase complex activity in mitochondria of heart, liver and skeletal muscle due to a decrease in the expression of mitochondrial DNA-encoded cytochrome b, the catalytic core of the complex. This reduction in mitochondrial function has a profound effect on the myocardium, with replacement of ventricular cardiomyocytes by fibro-fatty tissue. Northern blotting showed a reduction in the mRNA for the mitochondrial DNA encoded proteins cytochrome b (cytb) and ND5 (NADH dehydrogenase subunit 5) and an elevation in a combined pre-processed ND5-CYTB transcript. This suggests that the PTCD2 protein is involved in processing RNA transcripts involving cytochrome b derived from mitochondrial DNA. This defines the site for PTCD2 action in mammalian mitochondria and suggests a possible role for dysfunction of this protein in the aetiology of heart failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome.

Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked MECP2 gene, which encodes a methyl-CpG binding transcriptional repressor. Using the Mecp2-null mouse (an animal model for RTT) and differential display, we found that mice with neurological symptoms overexpress the nuclear gene for ubiquinol-cytochrome c reductase core protein 1 (Uqcrc1). Chromatin immunop...

متن کامل

Overexpression of Ubiquinol-Cytochrome c Reductase Core Protein 1 May Protect H9c2 Cardiac Cells by Binding with Zinc

In several recent studies, proteomics analyses suggest that increase of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is cardio-protective. However, direct evidence for this effect has not yet been obtained. Thus, the current study aimed to determine this effect and the mechanism underlying this effect. The results showed that overexpression of UQCRC1 protected H9c2 cardiac cells aga...

متن کامل

The circular-dichroic properties of the 'Rieske' iron-sulphur protein in the mitochondrial ubiquinol: cytochrome c reductase.

We have studied the c.d. spectra of the 'Rieske' iron-sulphur protein isolated from the ubiquinol: cytochrome c reductase (bc1 complex) of bovine heart mitochondria. Both the oxidized and the reduced form of the 'Rieske' protein display a series of well-resolved c.d. features resembling those reported for the 'Rieske'-type iron-sulphur protein purified from the bacterium Thermus thermophilus [F...

متن کامل

Proteomic analysis of succinate dehydrogenase and ubiquinol-cytochrome c reductase (Complex II and III) isolated by immunoprecipitation from bovine and mouse heart mitochondria.

The oxidative phosphorylation system (OXPHOS) consists of five multi-enzyme complexes, Complexes I-V, and is a key component of mitochondrial function relating to energy production, oxidative stress, cell signaling and apoptosis. Defects or a reduction in activity in various components that make up the OXPHOS enzymes can cause serious diseases, including neurodegenerative disease and various me...

متن کامل

Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor.

The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 416 1  شماره 

صفحات  -

تاریخ انتشار 2008